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Single-strand molecular wheels1 of paramagnetic 3d metals are
of growing interest for reasons such as their high symmetry, which
makes them good model systems for the study of one-dimensional
magnetism,2 magnetic anisotropy, and quantum effects such as
coherent tunneling of the Ne´el vector.3 As a result, a growing
number of Mx (x g 8) molecular wheels are being studied. There
are, however, relatively few other 3d Mx loop-like closed topologies4

when compared to those containing diamagnetic 4d and 5d metals
such as Pd, Pt, Au, etc., or metal-metal-bonded M2 repeating units.4

These span a variety of metals and ligands and have resulted in a
wide range of loop and multi-loop structures, from squares,
rectangles, boxes, etc., to complicated three-dimensional polyhedra.5

In addition to their inherent properties, such species are also
potential building blocks for molecular nanodevices.6 Analogous
access to a greater range of loop-like closed topologies for
paramagnetic 3d metals would offer benefits to a variety of
spectroscopic, electrochemical, magnetic, and host-guest binding
studies. For this reason, we are developing the currently unexplored
reactivity chemistry of 3d metal wheels, the prototype of which
was the planar “ferric wheel” [Fe10(OMe)20(O2CR)10] (1).7 In this
paper, we report a new, diolate-containing class of ferric wheel
[Fe12(pd)12(O2CEt)12] (2), and that N-based chelates can convert
molecular wheels1 and2 into molecular squares and rectangles.

The reaction of [Fe3O(O2CEt)6(H2O)3]+ with an excess of 1,3-
propanediol (pdH2) in MeCN followed by addition of Et2O gave
yellow-green needles of [Fe12(pd)12(O2CEt)12] (2) in 75% yield. Its
structure8 (Figure 1) comprises 12 FeIII atoms linked via EtCO2-

and pd2- bridges to form a puckered wheel of crystallographicS6

symmetry, with eachη2:η2:µ3-pd2- group bridging three adjacent
octahedral Fe atoms. There are two symmetry-distinct Fe‚‚‚Fe pairs,
with identical bridges but differing slightly in metric parameters:
(A) av Fe-O ) 2.001 Å, av Fe-O-Fe) 99.57°; (B) av Fe-O )
2.022 Å, av Fe-O-Fe 97.45°. Complex2 is a member of the
general [Fex(OR)2x(O2CR)x] family of ferric wheels, of which1
and [Fe12(OMe)24(O2CC(OH)Ph2)12]9a are the{x ) 10} and{x )
12} members, respectively; complex2 is a{x ) 12, (OR)2 ) pd2-}
member, the first of a new class with diolate bridges. With NO3

-

ions, it has elsewhere been shown that pd2- gives [Fe18(O2CPh)6-
(pd)12(pdH)12(NO3)6](NO3)6.9b

In the absence of any significant previous reactivity studies of
the ferric wheel family, other than carboxylate substitution,10 we
have initiated a study of their reactions with heteroaromatic chelates
such as 2,2′-bipyridine (bpy) and 2,2′:6′,2′′-terpyridine (tpy). We
wondered if such relatively inflexible chelates might affect wheel
curvature and/or three-dimensional shape and thus lead to new types
of wheel-related products. Indeed, reaction of2 in MeCN with 4
equiv each of tpy and NaClO4 gave, on addition of Et2O, yellow

prisms of [Fe12O4(pd)8(O2CEt)4(tpy)8](ClO4)8 (3) as3‚10MeCN in
10% nonoptimized yield. A higher-yield procedure (∼90% based
on Fe) was subsequently developed from the reaction of Fe(ClO4)3‚
6H2O with 1 equiv of tpy and a large excess of pdH2 in MeCN.
The [Fe12]8+ cation8 of 3 (Figure 2) is a molecular square comprising
alternating{Fe2(µ-O)(tpy)2}4+ “side” and{Fe(η2:η2:µ3-pd)2(η2-O2-
CEt)}2- “corner” subunits linked by pd2- O atoms. As for2, the
[Fe12]8+ square is not planar, and the Fe-Fe distances fall into two
ranges: 3.506-3.551 Å in the{Fe2(µ-O)(tpy)2}4+ subunits, and
3.135-3.162 Å between the latter and the{Fe(O2CEt)(pd)2}2-

subunits. The Fe-O2--Fe and Fe-O(pd)-Fe ranges are 161.19-
168.10 and 103.31-109.22°, respectively.
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Figure 1. The structure of the Fe12 ferric wheel2. Hydrogen atoms have
been omitted for clarity. Color scheme: FeIII yellow, O red, C gray.

Figure 2. The structure of the [Fe12]8+ cation of3. Hydrogen atoms have
been omitted for clarity. Color scheme: FeIII yellow, O red, N blue, C gray.
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Similarly, reaction of1 (R ) Me) in MeCN with 4 equiv each
of bpy and NaClO4 gave, on addition of Et2O, green crystals of
[Fe4O(OH)3(O2CMe)4(bpy)4](ClO4)3 (4) in 30% yield. The structure8

of the cation of4 (Figure 3) is similar to the 1,10-phenanthroline
derivative11 and consists of a planar FeIII

4 rectangle (Fe1‚‚‚Fe4)
3.207 Å, Fe2‚‚‚Fe3 3.293 Å, Fe1‚‚‚Fe2) 3.674 Å, and Fe3‚‚‚Fe4
) 3.698 Å); the Fe-Fe-Fe angles are in the range of 89.30-
91.08°. Three sides are bridged by OH- (O1, O2, O3) and one by
O2- (O4) ions (confirmed by bond valence sum calculations; see
Supporting Information) and the short sides each also by twoη1:
η1:µ-MeCO2

- groups. There is an intramolecular hydrogen bond
(O2‚‚‚O4) 2.523 Å) with the H atom asymmetrically located since
Fe-O4 bonds (av 1.856 Å) are shorter than Fe-O2 ones (av 1.926
Å), showing that O4 retains its O2- character.

Solid-state magnetic susceptibility (øM) data were collected on
vacuum-dried, microcrystalline samples of complexes2-4 in the
5.0-300 K range and in a 0.1 T magnetic field. In all cases,øMT
decreases steadily with decreasing temperature from 20.96 (2), 44.87
(3), and 3.90 (4) cm3 mol-1 K at 300 K to 1.35 (2), 0.40 (3), and
0.03 (4) cm3 mol-1 K at 5.0 K (Figure 4). These indicateS ) 0
ground states, as expected for antiferromagnetic exchange inter-
actions between even-membered loops of FeIII atoms.

Theoretical calculations were performed on2-4 using the ZILSH
method12 to probe the strength of their exchange constantsJij (H
) -2JŜi‚Ŝj convention). For2, the two exchange constants wereJ
) -20.5 cm-1 andJ′ ) -13.3 cm-1 for the A and B Fe2 pairs,
respectively. For3, {Fe2(µ-O)} and{Fe(µ-pd)2} J values were in
the ranges of-124.6 to-152.6 cm-1 and-32.1 to-49.8 cm-1,
respectively. For4, J14 ) -69.0 cm-1, J12 ) -27.0 cm-1, J34 )
-32.4 cm-1, and J23 ) -22.8 cm-1 (the subscripts refer to the
atom labels); these were refined by fits to the magnetic susceptibility
data using a genetic algorithm method described elsewhere,12 which
gaveJ14 ) -63.3 cm-1, J12 ) -25.2 cm-1, J34 ) -26.6 cm-1, J23

) -19.8 cm-1, andg ) 1.97, with TIP fixed at 600× 10-6 cm3

K mol-1. The fit is shown in the Supporting Information. As
expected, the oxide-bridged pair (Fe1‚‚‚Fe4) is much more strongly
antiferromagnetically coupled than the OH--bridged pairs.13 The
Fe1‚‚‚Fe2 and Fe3‚‚‚Fe4 couplings are similar, as expected, and
J23 is weaker, again as expected on the basis of the smaller Fe2-
O-Fe3 angle (117.5°) versus∼135° for Fe1-O-Fe2 and Fe3-
O-Fe4.14-16 For all the compounds, the signs and relative
magnitudes are consistent with established magnetostructural
correlations.12-16

In summary, the incorporation of inflexible bpy and tpy chelates
into ferric wheel chemistry has led to products retaining a single-
strand loop structure and possessing square or rectangular topolo-
gies. Of the products3 and 4, Fe12 complex 3 more closely
resembles its Fe12 starting material2, which can be rationalized as
due to the bidentate, chelating pd2- being more able to resist
structural disruption by the added chelate than can MeO- wheel1.
In fact, 3 can be conveniently related to2 as being the result of
clipping eight tpy groups onto2 and causing, as a consequence of
the loss of the bridging carboxylate groups at these positions,
formation of the near-linear Fe-O-Fe sides of a square topology.
This suggests that many other interesting loop structures of various
size and shape await discovery in 3d M/O chemistry by appropriate
choice of the combination of bridging and chelating ligands. Further
studies along these lines are in progress.
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Figure 3. The structure of the cation of4. Hydrogen atoms are omitted
for clarity. Color scheme: FeIII yellow, O red, N blue, C gray.

Figure 4. Plot of øMT versusT for complexes1 (9), 3 (2), and4 (b).
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